Deep UV Raman & Fluorescence Spectroscopy for In Situ Process Analysis

Ray D. Reid, Quoc Nguyen, M. Reid, Kripa Sijapati, & William Hug

Photon Systems, Inc.

FACSS/SciX Palm Springs, CA October 15, 2019

Outline

- Detection goals & methods for RCV and real-time continuous manufacturing
- Advantages of deep UV Raman & fluorescence detection
- Detection examples for pharma products
- Deep UV Raman & fluorescence instruments
- Chemical printer for NIST traceable chemical concentration calibration

Quality Control in Continuous Manufacturing

The goal

Provide instrumentation for real-time detection of the key ingredients during continuous flow manufacturing

The solution

A miniature deep UV Raman instrument that avoids fluorescence interference or obscuration and provides a high level of sensitivity and specificity for the ingredients

Rapid Cleaning Verification

The goal

To augment or replace the present swab & test method for equipment cleaning verification with a faster and better controlled and documented method.

The solution

A handheld device that quantifies trace amounts of API in real time on manufacturing surfaces.

Result: Significantly reducing production down time.

Advantages of deep UV Raman & fluorescence detection

Advantages of Deep UV Detection vs Visible or IR?

- Non-contact, reagentless, no sample handling or preparation
- Excitation below 250 nm separates Raman & fluorescence spectral regions to enable
 - ✓ Clear Raman spectra with no obscuration or alteration by native fluorescence
 - ✓ No alteration of the fluorescence spectra by major Raman bands
 - ✓ The ability to simultaneously detect Raman and native fluorescence
- Much higher Raman sensitivity due to Rayleigh law and resonance Raman enhancement effects
- Fluorescence detection alone has much higher specificity when excitation is below 250 nm
- Detection of concentration of pharma materials in the low ng/cm2 has been demonstrated
- Detection is solar blind, enabling detection in full daylight without interferences

Why Deep UV below 250nm?

When excitation < 250nm Raman and fluorescence spectral regions are separated

Sensitivity to Excitation Wavelength

Raman Spectra with Excitation at 248 nm versus 262 nm

(Example is G Agents)

Deep UV Fluorescence Spectra of 52 Compounds

with no baseline subtraction or compensation, Ex=248 nm

Chemical Differentiability Using Deep UV Excited Fluorescence Alone

A single deep UV laser pulse determines the location of an unknown substance in this chemometric space

Combining the Sensitivity of Fluorescence & specificity of Raman

- Fluorescence is the most sensitive method of detection, over 10⁶ to 10⁸ times more sensitive than Raman, providing longer standoff distances and/or detection at lower concentrations
- Raman provides information about chemical bonds and functional groups, including those that do not fluoresce (aliphatics and simple compounds)
- Fluorescence data provides information about the overall electronic structure of target & substrate components (aromatics, ketones, aldehydes)

Raman Active		Weak Fluorescence	Strong Fluorescence
Water Amino Acids Alcohols	HMX PETN RDX	TDG DMMP DIMP TEPO	C4 Microbes Semtex Toxins/Proteins
Aliphatics		Ammonia Nitrate	ANFOs Narcotics
DNA/RNA	TNT	Urea Nitrate Nitroglycerin	Aromatic Amino Acids
Lipids	Perchlorates	Ketones/Aldehydes	PETN VOCs

Detection Examples for Pharm Products

OTC Benylin: dextromethorphan hydrobromide C₁₈H₂₈BrNO₂

OTC Children's Motrin (ibuprofen)–Bubblegum Flavor Ex = 248 nm

1512 Industrial Park St., Covina, CA 91722 T: 626 967-6431 F: 626 967-5813 <u>www.photonsystems.com</u>

14

OTC Children's Tylenol (acetaminophen) w Various Flavors

Ex = 248.6 nm Raw results. No baseline compensation.

PHOTON All Information in this slide is proprietary. Written permission is required to from PSI.

Deep UV Raman & Fluorescence Instruments

Raman PL 200: Fully self-contained deep UV Raman & fluorescence instrument

TraC: Handheld trace surface contamination detector for RCV

STANDOFF 200: Fully self contained, handheld standoff chemical & biological sensor

ChemCal: NIST traceable chemical printer & calibration instrument for surface detectors

Deep UV Raman PL 200

with manual or computer-controlled stage or liquid flow cell

Features of the Deep UV Raman PL 200

- A deep UV Raman and fluorescence spectrometer
- With either computer-controlled stage for mapping or liquid flow cell for continuous manufacturing quality control
- Intended for OEM applications with dramatically smaller SWAP/C than other deep UV instruments on the market
- Avoids fluorescence interference or obscuration of Raman spectra
- Enables detection and quantification of Raman bands for a wide range of pharma ingredients not possible with 785 nm or 1064 nm Raman systems due to fluorescence
- SWAP: 18 x 20 x 42 cm, 10 kg, 60 W max (100-260VAC)

Raman PL 200

with various types of flow cells or cuvette holders

Deep UV Trace Chemical (TraC) Sensor LODs < 1 µg/cm² Wt. 1.5 lbs

Features of Deep UV TraC RCV Sensor

- Fully self-contained RCV sensor with embedded microprocessor for instrument control, data processing, real-time data storage, and display
- Able to measure trace concentrations on curved surfaces, corners, crevices, screens, grates
- Sample rate > 10 samples/s with time-stamped real-time recording
- \Box Hi sensitivity: able to detect concentrations of APIs < 1 μ g/cm²
- Large working distance: 0 to 2 cm
- □ Sampling area: 0.25 cm²
- Non-contact sensing with large working distance (0 to 2 cm)
- □ Hand-Held: < 0.7 kg (1.5 lbs)
- Small: 7.6 x 8.9 x 19 cm
- Long battery lifetime: > 40 hours full power; > 120 hours standby
- Startup time < 10 s
- GMP & Intrinsically safe

1512 Industrial Park St., Covina, CA 91722 T: 626 967-6431 F: 626 967-5813 <u>www.photonsystems.com</u>

Typical Concentration Calibration Curve & Time Stability

S Y S T E M S

STANDOFF 200 CB Surface Analyzer

Features

Fully integrated deep UV Raman & fluorescence surface detection analyzer
Single handed operation: 4-button plus trigger control
Warm-up: < 10s from cold start, 3 s from standby mode
Built-in-test: full functional test of all components on startup
Spectral Calibration: Auto-calibrated on analyzer startup
Two Coaxial Context Cameras: 75° wide angle image, 20mm micro image around laser spot
Autofocused Standoff: 0.6 m to 5+ m
Materials Detected: Chemical and Biological
CBE Libraries: Built in unclassified library +SD card libraries
Standoff Distance: 0.5 m to 5+ m in full daylight conditions
Spectral Range: Raman: 250 cm⁻¹ to 3500cm⁻¹
Fluorescence: 270nm to 320nm
Context Info with Spectral Data: Date/time stamps, GPS, azimuth, distance and two

Context Info with Spectral Data: Date/time stamps, GPS, azimuth, distance and two contextual photos

Power Supply: User replaceable 24 V LiPO battery pack (UN/DOT 38.3 rated) or 24 V wall adapter

Communication: WiFi plus Wired USB 3.0 Weight: 12 pounds Dimensions: 7" W x 11" H x 16" L Ingress Protection: IP67 Robot compatible: ¼ -20 camera thread or dove-tail mount

Why do you need a chemical printer?

- Test/calibrate/validate future RCV tools using NIST traceable method
- Test/calibrate/validate CURRENT cleaning tools & methods
 - Create concentration curves for swabbing.
 - Test/train swabbing personnel with accurate areal concentrations.
 - Test recovery from various surfaces/topologies with different swabbing media.
- Create coupons for visual /hotspot detection of API.
 - Hotspot detection.
 - ✓ Train personnel on visual inspection limits.
- Perform all of these with single or multiple chemicals on a single coupon or coupons.
 - ✓ Detergent + API.
 - Excipient + API.
 - Detergent + API + Excipient.

Chemical Calibration Printing

NIST Traceable Chemical Concentration Calibration ChemCal: A chemical printer, mapper, & calibrator

Creates up to 16 coupons with *a priori* known, NIST traceable, concentrations of many different chemicals, including APIs, detergents, excipients, etc. on Pharma-type surfaces or quartz crystal microbalance elements for the purpose of performing calibration of hand-held trace chemical sensors for rapid cleaning validation.
Prints and detects on curved or flat surfaces, corners, grates, screens, etc.

Operational Scenario:

- ✓ Load APIs, etc in Eppendorf rack. Up to 21.
- Load coupons onto tray.
- Press Start.
- The system prints, scans, & outputs a full calibration curve in under 3 hours. (Prints and scans 16 coupons.)

Summary

- Several opportunities exist for pharma and other chemical manufacturing RCV and continuous flow manufacturing instrumentation using deep UV excitation below 250 nm.
- Excitation below 250 nm provides fluorescence-free Raman and Raman-free fluorescence detection simultaneously, enabling both modes of detection to provide more accurate information about a trace substance on a surface or in a liquid.
- Combined Raman & fluorescence detection method enhance both sensitivity and specificity in identifying unknown targets
- Detection of Raman & fluorescence in the deep UV can be accomplished using low energy lasers without major alteration or damage/ignition of targets.
- Surface detectors need a method of accurate chemical concentration calibration, common to all methods of surface detection. We call this instrument is called ChemCal.

Questions?

