

TraC – A disruptive new hand-held rapid measurement system to verify pharma equipment surface cleanliness

Presented by:

Ray Reid, President, Photon Systems

Come see this at our booth # 514

- Present method of cleaning verification
- Benefits of the direct, non-contact, surface analysis
- The method
- Automated calibration –chemical printers & mappers
- Some technical details
- On the horizon fully self-contained, real-time, results

Present & proposed method

Surface sampling for cleaning verification

Where we're going

The goal

To augment or replace the present swab & test method for equipment cleaning verification with a faster and better controlled and documented method

The opportunity

Develop a handheld system that can detect & quantify in real-time and without contact, trace levels of APIs on pharmaceutical manufacturing equipment and surfaces, with performances meeting current standards & pharmacopeia requirements

Present & proposed cleaning verification in our plants

Steps in today's traditional swab & test methods

Steps for today's proposed scenario using non-contact TraC sensor

An introduction to RCV

The drivers for Rapid Cleaning Verification Methods

Quality

• Reduction of human errors

•Reduction of the "art" of sample acquisition and testing

Decreased risk to production

Safety

• Decreasing the number of operations

Improving knowledge

Reducing/improving cleaning cycles

Cycle Time

• Processing samples on the "shop floor"

- Enabling business decisions at the point of process
- Decreased wait time

Tricorder then vs TraCorder now Sensing, Computing and Recording

Benefits of TraC Sensor

A new way of seeing things

Feature & benefits of TraC

- Direct non-contact surface analysis: 0.5 to 2 cm standoff
- Hand held: < 2 lbs</p>
- Real-time: <0.1 sec typical test time, <1 sec max</p>
 - ✓ rapidly finds hot spots for further testing
- In situ: inside equipment at the equipment site
- No consumables: reagent-less and no consumables
- Non destructive & non-contact: does not disturb sample
 - ✓ allows further testing by traditional methods
- Limit of Detection: < 1 μg/cm²
- Specificity: > 95% differentiability of APIs, excipients, etc.
- Built-in microcomputer & display for instrument control & future data processing and information display
- Built-in sensor global instrument function (bump) test
- GMP: good manufacturing practice
- Long battery lifetime: > 36 hours

The method: deep UV multichannel fluorescence

Wavelength nm

Method of Detection

FOR EACH SPOT/PIXEL/AREA ANALYZED:

Natural surface that may contain residual API (no preparation required)

Step 3. Collected light is collected in 180 degree backscatter, separated, and detected with a multichannel detector.

Step 2. Deep UV interaction with sample causes native fluorescence emission, returning back to the Instrument, without the need for reagents.

Step 4. Multichannel spectral data is processed & stored with site, API, & position information. Repeat for all positions in machine.

Step 5. Download data for processing with Pfizer cleaning verification software. Future sensors may be enabled for real-time, in situ, analysis.

Validation of TraC

Sensitivity & Specificity

All hands on deck

Proofing the concept

ChemCal: A chemical printer & mapper

Come see this at our booth # 514

ChemCal: A chemical printer & mapper

- An instrument for chemical concentration calibration
 - ✓ Includes a surface chemical printer
 - Produces known chemical concentrations on surfaces
 - Generates 2D arrays of known chemical droplets to produce known areal concentrations in the range from <1 ng/cm² to > 10 mg/cm²
 - Wide range of chemicals & mixtures: over 15 different chemicals interleaved or overlayed
 - o Droplet size: 1 50 nL
 - Uniform, pseudo-homogeneous, chemical deposition
 - Wide range of substrate surface materials
 - Able to deposit on a wide range of surface topography
 - And a chemical mapper to calibrate the TraC over a wide range of chemicals & chemical concentrations.
 - Enables automatic generation of a chemical concentration curve

API-1 concentration calibration

API-2 concentration calibration

On the horizon

To tomorrow, and beyond

TraC-X: Our future TraCorder

Impact on future methods and compliance

Fully self-contained sensor with on-board computation of display of chemical and concentration, along with logging information on the Pharma equipment ID, location of samples, date & time of data, and go/no-go certification of results.

Provides dramatic savings in cost and speed for certification of machine cleanliness compliance.

TraC: A Trace Chemical Detector

The crew

This instrument is the result of a technology development collaboration between Photon Systems and Pfizer

Photon Systems:

Mike Reid Prashant Oswal Quoc Nguyen Kim Sullivan Kripa Sijapati Ray Reid Bill Hug

Pfizer PASG:

Steve Hammond Joep Timmermans Ben Lyons Alan Rhoden Gillian Miller Conor McSweeney Apu Sarwar

