Improved sensing using simultaneous deep UV Raman and fluorescence detection-II

William F. Hug¹, Rohit Bhartia², Kripa Sijapati¹, Luther Beegle², & Ray Reid¹ ¹Photon Systems, ²Jet Propulsion Laboratory

> SPIE DSS – Baltimore, MD April 7, 2014

Supported under contract from Army/ECBC & DTRA

Distribution Statement A: Approved for public release; distribution is unlimited.

Outline

- Background on improved sensing
- Raman & fluorescence as orthogonal detection modes
- Combining Raman & fluorescence for improved sensing
- Deep UV instruments: standoff to macro to micro
- Raman & fluorescence spectra with miniature laser/detector

Background on Improved Sensing

□ Goal is to use deep UV methods to increase the probability of detection and reduce the probability of false detection for specific, targeted, chemical, biological, and explosives (CBE) materials

□ This paper is an extension of work presented at the 2012 SPIE DSS Conference: Bhartia, R., W. F. Hug, and R.D. Reid, "Improved sensing using simultaneous deep UV Raman and fluorescence detection", SPIE Security & Defense, Vol. 8358, No. 46, April 26, 2012

U We will focus on advancements since this prior paper

Background on Improved Sensing

We are developing hand-held sensors for in situ detection and classification of trace concentrations of CBE materials on surfaces at short range standoff distances.

□ The sensors are light weight, including deep UV laser, Raman and fluorescence spectrometers, computer, display, and batteries.

□ The sensors employ excitation of targets by a low energy deep UV laser to excite targeted samples.

Raman & Fluorescence as Independent & Orthogonal Modes of Detection

Why the Deep UV?

□ Canonical reason: Fluorescence-free Raman, higher sensitivity, solar blind

- □ In deep UV both Raman & fluorescence can be collected simultaneously
- □ Fluorescence sensitivity is higher than even strong deep UV enhanced Raman bands
- Raman provides information on chemical bonds
- □ Fluorescence provides information on overall electronic structure

Fluorescence Free Raman Spectra of Crude Oil

with Excitation at 532 nm and 248 nm

Sensitivity to Excitation Wavelength

Raman Spectra with Excitation at 248 nm versus 262 nm

(Example is G Agents)

Raman Spectra of 52 Compounds

Fluorescence Spectra of 52 Compounds

Combining Raman & Fluorescence

Raman Active		Weak Fluorescence	Strong Fluorescence
Water Amino Acids Alcohols Aliphatics DNA/RNA	HMX PETN RDX TNT	TDG DMMP DIMP TEPO Ammonia Nitrate Urea Nitrate Nitroglycerin	C4 Microbes Semtex Toxins/Proteins ANFOs Narcotics Aromatic Amino Acids
Lipids Perc	chlorates	Ketones/Aldehydes	

Raman provides information about chemical bonds and functional groups, including those that do not fluoresce (aliphatics and simple compounds)

□ Fluorescence data provides information about the electronic structure of target & substrate ingredients (aromatics, ketones, aldehydes)

□ Fluorescence is over 10⁴ to 10⁷ times more sensitive than Raman, providing longer standoff distances or detection at lower concentrations

Fluorescence/Raman Fusion

Deep UV Instruments

□ The advantages of deep UV Raman methods have been demonstrated in many laboratory environments using high power laser and large instruments.

Our focus is developing miniature hand-held sensors for in situ detection in field applications.

□ The sensors are light weight, including deep UV laser, Raman and fluorescence spectrometers, computer, display, and batteries.

□ The sensors employ excitation of targets by a low energy deep UV laser to excite targeted samples.

Surface Raman & Fluor Instruments

Over wide spatial scales

	<image/>	<image/>	
	Standoff (TUCBE)	Macroscopic (MOSAIC)	Microscopic (µMOSAIC)
Working distance	1-25 m	2-20 cm	1-10 mm
Spatial resolution	1-10 mm	50 to 500 µm	150 – 200 nm
LOD	60 spores or low µg per cm² at 5 m	Single spore or ng/ cm ² at 5 cm	Small fraction of single live spore

Raman Resolution effect on Chemometrics

acetone cyanohydrin Allyl isothiocyanate Arsenic trichloride benzene carbon disulfide chloroacetone

Π

chloroacetonitrile chlorosulfonic acid cyclohexanone dichloromethane ethanol formaldehyde

hexachloro cyclopentadiene hydroden peroxide nitromethane parathion pentane sulfuric acid turpentine

Group 1 compounds containing a ketone or terpene structures. Group 2 carbon-based compounds with methyl or hydroxyl groups. Group 3 consist of linear carbonchloride compounds. **Group 4** consist of single ring aromatic compounds.

Group 5 consists of 3 subgroups that can be best described as explosive or highly reactive materials and include sulfur compounds, H202, and nitromethane.

Next Gen DUV Raman & Fluorescence CBE Sensor

Employing miniature DUV laser and CCD detector used in following data

Custom miniature deep UV Raman/fluorescence 3D chemical imaging prototype for planetary science on Mars. 45th LPSC 2014. DUV laser is the silver cylinder.

6.3"x 7.9"x 2.4", 8.8 lbs: including laser, spectrometer, detector, 1 cm² mapper, autofocus, all electronics

Raman Spectra of Bulk SEMTEX (PETN +RDX)

Fluorescence Spectra of Bulk Explosives

Raman Spectra of Bulk C4 (RDX)

Raman Spectra of Bulk TNT

Raman Spectra of Oxidizers & DMMP with no baseline subtraction or compensation, Ex=248 nm

baseline offset for clarity

Fluorescence Spectra of CBE Materials

Summary

- Fluorescence-free Raman spectra can be obtained with excitation below 250 nm
- Combined Raman & fluorescence detection method enhance both sensitivity and specificity in identifying unknown targets
- Excitation below 250 nm provides separation between Raman & fluorescence and enables simultaneous detection of both.
- Detection of Raman & fluorescence in the deep UV can be accomplished using low energy lasers without major alteration or damage/ignition of targets

Funding For This Work

Army/ECBC, Contract No. W911SR-11-C-0089 -Dr. Augustus Fountain & Dr. Steven Christesen

DTRA Contract No. HDTRA1-09-C-0010 -Dr. Timothy Leong

NASA/ASTID, Contract No. NNH10ZDA001N

Questions?

Single Pulse Raman Spectra Gen 2.5 instrument, f=1.3 m (f/6.3)

Raman shift (cm-1)

TUCBE Gen 2.5 Data: PCA

NEW IMAGES FROM NEW ANALYSIS PROGRAM

